Lecture 27: Goldreich-Levin Theorem

Lecture 27: Goldreich-Levin Theorem

▲□ → ▲ 目 → ▲ 目 →

э

Notation

- Recall ⟨f,g⟩ is the *expected* value of f(x)g(x) over uniformly random x ∈ {0,1}ⁿ
- The dot-product of $x, y \in \{0, 1\}^n$ is, represented by $x \cdot y$, equal to $\bigoplus_{i \in [n]} x_i y_i$
- A function H: {0,1}ⁿ → ℝ can be interpreted as a 2ⁿ long string of ℝ entries. On querying H at r, we obtain the r-th entry of the string.
- Two functions f and g are *close*, if the strings corresponding to the function f and g differ only at a *small* number of positions (we will make this more quantitative later in the notes)

Goal

- Problem Statement: Given an oracle H: {0,1}ⁿ → {+1,-1} that is close to some χ_A, we are interested in querying H multiple times and explicitly finding χ_S
- Perspective (1): Recall, Hadamard code: The encoding of S ⊆ [k] is the string corresponding to the function χ_S. This linear code has block-length n = 2^k and distance d = 2^{k-1}. So, H is an erroneous codeword and we are interested in finding the nearest codeword, i.e. the decoding problem for Hadamard Code.
- Perspective (2): Given a function *H*, we are interested in learning its heavy Fourier Coefficients. Restricting to these Fourier coefficients, we can compute a function \tilde{H} that approximates *H*. That is, we approximately learn the function *H* by querying it.

- Assumption: *H completely agrees* with some χ_S
- Algorithm: We query H at e_i
- If $H(e_i) = +1$, then we know that $i \notin S$; and, if $H(e_i) = -1$, then we know that $i \in S$
- By querying H at all e_i , $i \in [n]$, we can always recover the set S

イロト イポト イヨト イヨト

First Non-trivial Decoding Result

- Assumption: H agrees with some χ_S with probability 3/4 + ε,
 i.e. H agrees with χ_S at some (3/4 + ε)2ⁿ inputs
- Algorithm: We compute $a_i = H(r) \cdot H(r + e_i)$ for $r \stackrel{s}{\leftarrow} \{0, 1\}^n$
- Note that: if "H(r) and $H(r + e_i)$ both agree with $\chi_S(r)$ and $\chi_S(r + e_i)$ " or "H(r) and $H(r + e_i)$ both disagree with $\chi_S(r)$ and $\chi_S(r + e_i)$ " then $a_i = \chi_S(e_i)$; otherwise, $a_i = -\chi_S(e_i)$.
- So, we have the following:

$$\begin{aligned} \Pr[\mathbf{a}_i \neq \chi_{\mathcal{S}}(\mathbf{e}_i)] &= \Pr[\mathcal{H}(r) \neq \chi_{\mathcal{S}}(\mathbf{e}_i) \land \mathcal{H}(r + \mathbf{e}_i) = \chi_{\mathcal{S}}(r + \mathbf{e}_i)] + \\ \Pr[\mathcal{H}(r) &= \chi_{\mathcal{S}}(\mathbf{e}_i) \land \mathcal{H}(r + \mathbf{e}_i) \neq \chi_{\mathcal{S}}(r + \mathbf{e}_i)] \\ &\leq \Pr[\mathcal{H}(r) \neq \chi_{\mathcal{S}}(\mathbf{e}_i)] + \Pr[\mathcal{H}(r + \mathbf{e}_i) \neq \chi_{\mathcal{S}}(r + \mathbf{e}_i)] \\ &\leq 2(1/4 - \varepsilon) = 1/2 - 2\varepsilon \end{aligned}$$

• By sampling k independent rs, we obtain a_i s that agree with $\chi_S(e_i)$ with probability $1/2 + 2\varepsilon$.

イロト イポト イラト イラト

- By taking the majority of the a_is we recover χ_S(e_i) correctly, except with probability exp(-Θ(k/ε²)) (Chernoff Bound). So, we recover χ_S(e_i) correctly with probability 1 − Θ(1/n²) by choosing k = Θ(ε² log n)
- We recover all $\chi_S(e_i)$, for all $i \in [n]$, with probability $1 n \cdot \Theta(1/n^2) = 1 1/n$, if we choose $k = \Theta(\varepsilon^2 \log n)$ (by Union Bound)
- Conditioned on recovering all $\chi_S(e_i)$, we recover S (using the idea of reconstruction of S when H agrees with χ_S always)

イロト イポト イヨト イヨト

There exists S such that:

- *H* agrees with χ_S with probability 1: We can recover *S* with probability 1 by querying *H* exactly 2n times.
- *H* agrees with χ_S with probability $3/4 + \varepsilon$: We can recover *S* with 1 1/n probability by querying *H* exactly $\Theta(\frac{1}{\varepsilon^2}n \log n)$ times

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

What if there is only 3/4 Agreement?

- Consider two distinct non-empty subsets S and S' and let $H(x) = \max{\chi_S(x), \chi_{S'}(x)}$
- Note that H(x) agrees with each of $\chi_S(x)$ and $\chi_{S'}(x)$ exactly at 3/4 positions
- So, given H if we decode it to S, then considering the witness "H agrees with $\chi_{S'}$ with probability 3/4" we always fail to recover S'!
- Thus, "Unique Decoding" is impossible if H agrees with (some) χ_S with probability in the range (1/2, 3/4]
- We do the next best thing: "List Decoding"
- Given $\varepsilon > 0$, the decoding procedure (probabilitically) outputs a list of subsets $L \subseteq 2^{[n]}$ such that if H agrees with $\chi(S)$ with probability $1/2 + \varepsilon$ then $S \in L$ with constant probability (say, 1/2)

Lemma

Given H and $\varepsilon > 0$, let

 $L_{\varepsilon} = \{ S \colon H \text{ agrees with } \chi_S \text{ with probability } 1/2 + \varepsilon \}$

Then, $|L_{\varepsilon}| \leq 1/4\varepsilon^2$.

- Note that if H and χ_S agree with probability at least $1/2 + \varepsilon$ then $\langle H, \chi_S \rangle = \widehat{H}(S) \ge 2\varepsilon$
- By Parseval's, we have $\sum_{S}\widehat{H}(S)^2 = \|H\|_2^2 = 1$
- Therefore, we have $|L_arepsilon|\leqslant 1/4arepsilon^2$

소리 에 소리에 이 소 물 에 드 이 다.

 Goal: Given ε > 0, (probabilistically) output a list L such that for all S ∈ L_ε, we have S ∈ L with probability at least 1/2

< ロ > < 同 > < 回 > < 回 > < 回 > <

- We will set ourselves an alternate goal: If H agrees with χ_S with probability $1/2 + \varepsilon$ we will construct a new oracle \widetilde{H} that agrees with χ_S with probability 7/8 (i.e. 3/4 + 1/8)
- Given access to \widetilde{H} we can recover S (we have already seen how to recover S if the agreement probability is $3/4 + \varepsilon$)

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

A Hypothetical Setting

- Suppose \widetilde{H} is queried at r. We compute the answer as follows.
- Let $\{r_1, \ldots, r_k\}$ be k uniformly random string drawn from $\{0, 1\}^n$
- Suppose (hypothetically) we are given $\{b_1, \ldots, b_k\}$ such that $b_i = \chi_S(r + r_i)$, for all $i \in [k]$
- Now, $\chi_{S}(r_{i}) \cdot b_{i}$ always agrees with $\chi_{S}(r)$, for $i \in [k]$
- Therefore, $H(r_i) \cdot b_i$ agrees with $\chi_S(r)$ with probability $1/2 + \varepsilon$, for $i \in [k]$
- The majority of $\{H(r_1) \cdot b_1, \ldots, H(r_k) \cdot b_k\}$ agrees with $\chi_S(r)$ with probability 31/32, for $k = \Theta(1/\varepsilon^2)$
- We output this majority ans as the answer $\widetilde{H}(r)$

Analysis of Hypothetical Setting

• Over random r, r_1, \ldots, r_k , (and conditioned on guessing b_1, \ldots, b_k correctly), we have:

$$\Pr_{r,r_1,\ldots,r_k}\left[\mathsf{ans}=\widetilde{H}(r)\right] \geqslant 31/32$$

• Using an averaging argument:

$$\Pr_{r_1,\ldots,r_k}\left[\Pr_r\left[\mathsf{ans}=\widetilde{H}(r)\right] \geqslant 7/8\right] \geqslant 3/4$$

- Intuition:
 - With probability 1/4 over the choices of r₁,..., r_k, we implement a bad oracle H
 .
 - With probability 3/4 over the choices of r₁,..., r_k, we implement a good oracle H̃ that agrees with χ_S with probability 7/8 (given the correct guesses b₁,..., b_k). In the good oracle case, we recover S, except with 1/n probability.
- We recover S with probability $3/4 1/n \ge 1/2$.

(Inefficient) Implementation of the Hypothetical World

- Suppose we enumerate all possible bits b_1, \ldots, b_k (this is exponential in k and, hence, is not efficient)
- When each b_i agrees with $\chi_S(r_i + r)$ then we can recover S
- Note that for different S, S' ∈ L_ε, the guesses are correct for different values of {b_i : i ∈ [k]}. If {b_i : i ∈ [k]} is consistent with χ_S(r_i + r) then we recover S. If {b_i : i ∈ [k]} is consistent with χ_{S'}(r_i + r) then we recover S'.

• Think: Can we generate r_is and b_is with less independence?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・