Lecture 27: Goldreich-Levin Theorem

Notation

- Recall $\langle f, g\rangle$ is the expected value of $f(x) g(x)$ over uniformly random $x \in\{0,1\}^{n}$
- The dot-product of $x, y \in\{0,1\}^{n}$ is, represented by $x \cdot y$, equal to $\oplus_{i \in[n]} x_{i} y_{i}$
- A function $H:\{0,1\}^{n} \rightarrow \mathbb{R}$ can be interpreted as a 2^{n} long string of \mathbb{R} entries. On querying H at r, we obtain the r-th entry of the string.
- Two functions f and g are close, if the strings corresponding to the function f and g differ only at a small number of positions (we will make this more quantitative later in the notes)
- Problem Statement: Given an oracle $H:\{0,1\}^{n} \rightarrow\{+1,-1\}$ that is close to some χ_{A}, we are interested in querying H multiple times and explicitly finding χ_{S}
- Perspective (1): Recall, Hadamard code: The encoding of $S \subseteq[k]$ is the string corresponding to the function χ_{S}. This linear code has block-length $n=2^{k}$ and distance $d=2^{k-1}$. So, H is an erroneous codeword and we are interested in finding the nearest codeword, i.e. the decoding problem for Hadamard Code.
- Perspective (2): Given a function H, we are interested in learning its heavy Fourier Coefficients. Restricting to these Fourier coefficients, we can compute a function \vec{H} that approximates H. That is, we approximately learn the function H by querying it.
- Assumption: H completely agrees with some χ_{S}
- Algorithm: We query H at e_{i}
- If $H\left(e_{i}\right)=+1$, then we know that $i \notin S$; and, if $H\left(e_{i}\right)=-1$, then we know that $i \in S$
- By querying H at all $e_{i}, i \in[n]$, we can always recover the set S

First Non-trivial Decoding Result

- Assumption: H agrees with some χ_{s} with probability $3 / 4+\varepsilon$, i.e. H agrees with χs at some $(3 / 4+\varepsilon) 2^{n}$ inputs
- Algorithm: We compute $a_{i}=H(r) \cdot H\left(r+e_{i}\right)$ for $r \leftarrow^{\varsigma}\{0,1\}^{n}$
- Note that: if "H(r) and $H\left(r+e_{i}\right)$ both agree with $\chi_{S}(r)$ and $\chi_{S}\left(r+e_{i}\right)$ " or "H(r) and $H\left(r+e_{i}\right)$ both disagree with $\chi_{S}(r)$ and $\chi_{S}\left(r+e_{i}\right)$ " then $a_{i}=\chi_{S}\left(e_{i}\right)$; otherwise, $a_{i}=-\chi_{S}\left(e_{i}\right)$.
- So, we have the following:

$$
\begin{aligned}
\operatorname{Pr}\left[a_{i} \neq \chi_{s}\left(e_{i}\right)\right]= & \operatorname{Pr}\left[H(r) \neq \chi_{s}\left(e_{i}\right) \wedge H\left(r+e_{i}\right)=\chi_{s}\left(r+e_{i}\right)\right]+ \\
& \operatorname{Pr}\left[H(r)=\chi_{s}\left(e_{i}\right) \wedge H\left(r+e_{i}\right) \neq \chi_{s}\left(r+e_{i}\right)\right] \\
\leqslant & \operatorname{Pr}\left[H(r) \neq \chi_{s}\left(e_{i}\right)\right]+\operatorname{Pr}\left[H\left(r+e_{i}\right) \neq \chi_{s}\left(r+e_{i}\right)\right] \\
\leqslant & 2(1 / 4-\varepsilon)=1 / 2-2 \varepsilon
\end{aligned}
$$

- By sampling k independent r s, we obtain $a_{i} s$ that agree with $\chi_{S}\left(e_{i}\right)$ with probability $1 / 2+2 \varepsilon$.

Decoding Analysis Continued

- By taking the majority of the a_{i} s we recover $\chi_{s}\left(e_{i}\right)$ correctly, except with probability $\exp \left(-\Theta\left(k / \varepsilon^{2}\right)\right)$ (Chernoff Bound). So, we recover $\chi_{S}\left(e_{i}\right)$ correctly with probability $1-\Theta\left(1 / n^{2}\right)$ by choosing $k=\Theta\left(\varepsilon^{2} \log n\right)$
- We recover all $\chi_{S}\left(e_{i}\right)$, for all $i \in[n]$, with probability $1-n \cdot \Theta\left(1 / n^{2}\right)=1-1 / n$, if we choose $k=\Theta\left(\varepsilon^{2} \log n\right)$ (by Union Bound)
- Conditioned on recovering all $\chi_{S}\left(e_{i}\right)$, we recover S (using the idea of reconstruction of S when H agrees with χ_{s} always)

There exists S such that:

- H agrees with χ_{s} with probability 1 : We can recover S with probability 1 by querying H exactly $2 n$ times.
- H agrees with χ_{S} with probability $3 / 4+\varepsilon$: We can recover S with $1-1 / n$ probability by querying H exactly $\Theta\left(\frac{1}{\varepsilon^{2}} n \log n\right)$ times

What if there is only $3 / 4$ Agreement?

- Consider two distinct non-empty subsets S and S^{\prime} and let $H(x)=\max \left\{\chi_{s}(x), \chi_{s^{\prime}}(x)\right\}$
- Note that $H(x)$ agrees with each of $\chi_{S}(x)$ and $\chi_{s^{\prime}}(x)$ exactly at $3 / 4$ positions
- So, given H if we decode it to S, then considering the witness " H agrees with $\chi_{S^{\prime}}$ with probability $3 / 4$ " we always fail to recover S^{\prime} !
- Thus, "Unique Decoding" is impossible if H agrees with (some) χ_{S} with probability in the range ($1 / 2,3 / 4$]
- We do the next best thing: "List Decoding"
- Given $\varepsilon>0$, the decoding procedure (probabilitically) outputs a list of subsets $L \subseteq 2^{[n]}$ such that if H agrees with $\chi(S)$ with probability $1 / 2+\varepsilon$ then $S \in L$ with constant probability (say, 1/2)

Lemma

Given H and $\varepsilon>0$, let

$$
L_{\varepsilon}=\left\{S: H \text { agrees with } \chi_{S} \text { with probability } 1 / 2+\varepsilon\right\}
$$

Then, $\left|L_{\varepsilon}\right| \leqslant 1 / 4 \varepsilon^{2}$.

- Note that if H and χ_{S} agree with probability at least $1 / 2+\varepsilon$ then $\langle H, \chi s\rangle=\widehat{H}(S) \geqslant 2 \varepsilon$
- By Parseval's, we have $\sum_{S} \widehat{H}(S)^{2}=\|H\|_{2}^{2}=1$
- Therefore, we have $\left|L_{\varepsilon}\right| \leqslant 1 / 4 \varepsilon^{2}$

List Decoding

- Goal: Given $\varepsilon>0$, (probabilistically) output a list L such that for all $S \in L_{\varepsilon}$, we have $S \in L$ with probability at least $1 / 2$

Goal: A bit more detail

- We will set ourselves an alternate goal: If H agrees with χ s with probability $1 / 2+\varepsilon$ we will construct a new oracle \widetilde{H} that agrees with χ_{s} with probability $7 / 8$ (i.e. $3 / 4+1 / 8$)
- Given access to \widetilde{H} we can recover S (we have already seen how to recover S if the agreement probability is $3 / 4+\varepsilon$)

A Hypothetical Setting

- Suppose \widetilde{H} is queried at r. We compute the answer as follows.
- Let $\left\{r_{1}, \ldots, r_{k}\right\}$ be k uniformly random string drawn from $\{0,1\}^{n}$
- Suppose (hypothetically) we are given $\left\{b_{1}, \ldots, b_{k}\right\}$ such that $b_{i}=\chi_{S}\left(r+r_{i}\right)$, for all $i \in[k]$
- Now, $\chi_{S}\left(r_{i}\right) \cdot b_{i}$ always agrees with $\chi_{S}(r)$, for $i \in[k]$
- Therefore, $H\left(r_{i}\right) \cdot b_{i}$ agrees with $\chi_{s}(r)$ with probability $1 / 2+\varepsilon$, for $i \in[k]$
- The majority of $\left\{H\left(r_{1}\right) \cdot b_{1}, \ldots, H\left(r_{k}\right) \cdot b_{k}\right\}$ agrees with $\chi_{S}(r)$ with probability $31 / 32$, for $k=\Theta\left(1 / \varepsilon^{2}\right)$
- We output this majority ans as the answer $\widetilde{H}(r)$

Analysis of Hypothetical Setting

- Over random r, r_{1}, \ldots, r_{k}, (and conditioned on guessing b_{1}, \ldots, b_{k} correctly), we have:

$$
\operatorname{Pr}_{r, r_{1}, \ldots, r_{k}}[\text { ans }=\widetilde{H}(r)] \geqslant 31 / 32
$$

- Using an averaging argument:

$$
\operatorname{Pr}_{r_{1}, \ldots, r_{k}}[\operatorname{Pr}[\text { ans }=\widetilde{H}(r)] \geqslant 7 / 8] \geqslant 3 / 4
$$

- Intuition:
- With probability $1 / 4$ over the choices of r_{1}, \ldots, r_{k}, we implement a bad oracle \widetilde{H}.
- With probability $3 / 4$ over the choices of r_{1}, \ldots, r_{k}, we implement a good oracle \widetilde{H} that agrees with χ_{s} with probability $7 / 8$ (given the correct guesses b_{1}, \ldots, b_{k}). In the good oracle case, we recover S, except with $1 / n$ probability.
- We recover S with probability $3 / 4-1 / n \geqslant 1 / 2$.

(Inefficient) Implementation of the Hypothetical World

- Suppose we enumerate all possible bits b_{1}, \ldots, b_{k} (this is exponential in k and, hence, is not efficient)
- When each b_{i} agrees with $\chi_{S}\left(r_{i}+r\right)$ then we can recover S
- Note that for different $S, S^{\prime} \in L_{\varepsilon}$, the guesses are correct for different values of $\left\{b_{i}: i \in[k]\right\}$. If $\left\{b_{i}: i \in[k]\right\}$ is consistent with $\chi_{S}\left(r_{i}+r\right)$ then we recover S. If $\left\{b_{i}: i \in[k]\right\}$ is consistent with $\chi_{S^{\prime}}\left(r_{i}+r\right)$ then we recover S^{\prime}.
- Think: Can we generate $r_{i} \mathrm{~s}$ and $b_{i} s$ with less independence?

