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Notation

Recall 〈f , g〉 is the expected value of f (x)g(x) over uniformly
random x ∈ {0, 1}n

The dot-product of x , y ∈ {0, 1}n is, represented by x · y ,
equal to ⊕i∈[n]xiyi

A function H : {0, 1}n → R can be interpreted as a 2n long
string of R entries. On querying H at r , we obtain the r -th
entry of the string.
Two functions f and g are close, if the strings corresponding to
the function f and g differ only at a small number of positions
(we will make this more quantitative later in the notes)
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Goal

Problem Statement: Given an oracle H : {0, 1}n → {+1,−1}
that is close to some χA, we are interested in querying H
multiple times and explicitly finding χS

Perspective (1): Recall, Hadamard code: The encoding of
S ⊆ [k] is the string corresponding to the function χS . This
linear code has block-length n = 2k and distance d = 2k−1.
So, H is an erroneous codeword and we are interested in
finding the nearest codeword, i.e. the decoding problem for
Hadamard Code.
Perspective (2): Given a function H, we are interested in
learning its heavy Fourier Coefficients. Restricting to these
Fourier coefficients, we can compute a function H̃ that
approximates H. That is, we approximately learn the function
H by querying it.
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Simple Starting Point

Assumption: H completely agrees with some χS

Algorithm: We query H at ei
If H(ei ) = +1, then we know that i 6∈ S ; and, if H(ei ) = −1,
then we know that i ∈ S

By querying H at all ei , i ∈ [n], we can always recover the set
S
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First Non-trivial Decoding Result

Assumption: H agrees with some χS with probability 3/4 + ε,
i.e. H agrees with χS at some (3/4 + ε)2n inputs

Algorithm: We compute ai = H(r) · H(r + ei ) for r $←{0, 1}n

Note that: if “H(r) and H(r + ei ) both agree with χS(r) and
χS(r + ei )” or “H(r) and H(r + ei ) both disagree with χS(r)
and χS(r + ei )” then ai = χS(ei ); otherwise, ai = −χS(ei ).
So, we have the following:

Pr[ai 6= χS(ei )] = Pr[H(r) 6= χS(ei ) ∧ H(r + ei ) = χS(r + ei )]+

Pr[H(r) = χS(ei ) ∧ H(r + ei ) 6= χS(r + ei )]

6 Pr[H(r) 6= χS(ei )] + Pr[H(r + ei ) 6= χS(r + ei )]

6 2(1/4− ε) = 1/2− 2ε

By sampling k independent rs, we obtain ai s that agree with
χS(ei ) with probability 1/2 + 2ε.
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Decoding Analysis Continued

By taking the majority of the ai s we recover χS(ei ) correctly,
except with probability exp(−Θ(k/ε2)) (Chernoff Bound). So,
we recover χS(ei ) correctly with probability 1−Θ(1/n2) by
choosing k = Θ(ε2 log n)

We recover all χS(ei ), for all i ∈ [n], with probability
1− n ·Θ(1/n2) = 1− 1/n, if we choose k = Θ(ε2 log n) (by
Union Bound)
Conditioned on recovering all χS(ei ), we recover S (using the
idea of reconstruction of S when H agrees with χS always)
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Summary

There exists S such that:
H agrees with χS with probability 1: We can recover S with
probability 1 by querying H exactly 2n times.
H agrees with χS with probability 3/4 + ε: We can recover S
with 1− 1/n probability by querying H exactly Θ( 1

ε2
n log n)

times
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What if there is only 3/4 Agreement?

Consider two distinct non-empty subsets S and S ′ and let
H(x) = max{χS(x), χS ′(x)}
Note that H(x) agrees with each of χS(x) and χS ′(x) exactly
at 3/4 positions
So, given H if we decode it to S , then considering the witness
“H agrees with χS ′ with probability 3/4” we always fail to
recover S ′!
Thus, “Unique Decoding” is impossible if H agrees with
(some) χS with probability in the range (1/2, 3/4]

We do the next best thing: “List Decoding”
Given ε > 0, the decoding procedure (probabilitically) outputs
a list of subsets L ⊆ 2[n] such that if H agrees with χ(S) with
probability 1/2 + ε then S ∈ L with constant probability (say,
1/2)
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Size of L

Lemma
Given H and ε > 0, let

Lε = {S : H agrees with χS with probability 1/2 + ε}

Then, |Lε| 6 1/4ε2.

Note that if H and χS agree with probability at least 1/2 + ε
then 〈H, χS〉 = Ĥ(S) > 2ε
By Parseval’s, we have

∑
S Ĥ(S)2 = ‖H‖22 = 1

Therefore, we have |Lε| 6 1/4ε2
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List Decoding

Goal: Given ε > 0, (probabilistically) output a list L such that
for all S ∈ Lε, we have S ∈ L with probability at least 1/2
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Goal: A bit more detail

We will set ourselves an alternate goal: If H agrees with χS

with probability 1/2 + ε we will construct a new oracle H̃ that
agrees with χS with probability 7/8 (i.e. 3/4 + 1/8)
Given access to H̃ we can recover S (we have already seen
how to recover S if the agreement probability is 3/4 + ε)
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A Hypothetical Setting

Suppose H̃ is queried at r . We compute the answer as follows.
Let {r1, . . . , rk} be k uniformly random string drawn from
{0, 1}n

Suppose (hypothetically) we are given {b1, . . . , bk} such that
bi = χS(r + ri ), for all i ∈ [k]

Now, χS(ri ) · bi always agrees with χS(r), for i ∈ [k]

Therefore, H(ri ) · bi agrees with χS(r) with probability
1/2 + ε, for i ∈ [k]

The majority of {H(r1) · b1, . . . ,H(rk) · bk} agrees with χS(r)
with probability 31/32, for k = Θ(1/ε2)

We output this majority ans as the answer H̃(r)
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Analysis of Hypothetical Setting

Over random r , r1, . . . , rk , (and conditioned on guessing
b1, . . . , bk correctly), we have:

Pr
r ,r1,...,rk

[
ans = H̃(r)

]
> 31/32

Using an averaging argument:

Pr
r1,...,rk

[
Pr
r

[
ans = H̃(r)

]
> 7/8

]
> 3/4

Intuition:
With probability 1/4 over the choices of r1, . . . , rk , we
implement a bad oracle H̃.
With probability 3/4 over the choices of r1, . . . , rk , we
implement a good oracle H̃ that agrees with χS with
probability 7/8 (given the correct guesses b1, . . . , bk). In the
good oracle case, we recover S , except with 1/n probability.

We recover S with probability 3/4− 1/n > 1/2.
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(Inefficient) Implementation of the Hypothetical World

Suppose we enumerate all possible bits b1, . . . , bk (this is
exponential in k and, hence, is not efficient)
When each bi agrees with χS(ri + r) then we can recover S
Note that for different S ,S ′ ∈ Lε, the guesses are correct for
different values of {bi : i ∈ [k]}. If {bi : i ∈ [k]} is consistent
with χS(ri + r) then we recover S . If {bi : i ∈ [k]} is
consistent with χS ′(ri + r) then we recover S ′.

Think: Can we generate ri s and bi s with less independence?
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